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Executive Summary 
The DARPA Urban Challenge offers an incredible opportunity to advance the state of the art in 
autonomous vehicle technology. Team VictorTango is acutely aware of this opportunity; our 
goal is to develop an autonomous vehicle system that will revolutionize unmanned systems.  
 
Our commitment to excellence begins with our vehicle platform, Odin, a 2005 Ford Escape 
Hybrid. Sensors, computers, power systems, and control elements have been integrated into 
Odin, resulting in an autonomous platform providing an extraordinary combination of safety, 
reliability, and ease of operation.  
 
Extensive effort has gone into the selection and location of sensors and into the development of 
algorithms and software. Data from multiple sensors is fused to perceive road coverage and to 
detect and differentiate static obstacles from vehicles. Where possible, we have relied on proven 
navigation approaches, but we have also developed revolutionary new approaches to ensure a 
successful progression from Basic Navigation through Advanced Traffic requirements. Important 
innovations include the development of novel software architectures, the creation of a custom 
Urban Challenge simulator, and total commitment to JAUS to enable cross-platform 
compatibility. Most importantly, the work of team VictorTango is bringing software out of 
simulation and into the field. 

1. Introduction 
On November 3rd, 2007, DARPA will host the Urban Challenge, an autonomous ground vehicle 
race in an urban environment. To meet this challenge, Virginia Tech and TORC Technologies 
have formed team VictorTango and have developed Odin, a 2005 Ford Hybrid Escape modified 
for autonomous operation. Team VictorTango is a collaborative effort between academia and 
industry. The team includes 46 undergraduate students, 8 graduate students, 4 faculty members, 
5 full time TORC employees and industry partners, including Ford Motor Co. and Caterpillar, 
Inc. 
 
The DARPA Urban Challenge requires an autonomous ground vehicle to navigate an ordered list 
of checkpoints in a road network. The road network is supplied as a-priori information in the 
form of a Route Network Definition File (RNDF), listing each road and contained lanes as well 
as regions called zones used to represent parking lots or other unstructured environments. The 
RNDF describes each lane by a series of waypoints and flags certain waypoints as entrances and 
exits that connect each lane to the road network. A series of Mission Data Files (MDF) are 
provided that specify checkpoints which must be visited in a specified order. The vehicle must 
begin operation less than five minutes after receipt of the MDF. The vehicle must choose roads 
considering road speed limits, possible road blockages and traffic conditions to achieve the 
checkpoints as fast as possible. 
 
The vehicle must adhere to rules of the road, specifically California state driving law, as well as 
DARPA mandated rules, such as vehicle separation distances. When traveling, the vehicle must 
remain centered in the travel lane and react safely to other vehicles by matching speeds or 
passing when appropriate. Intersections are defined in the RNDF using waypoints specified as 
exits or entrances and are optionally marked as a stop indicating a stop sign behavior. The 
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vehicle is not required to sense any signs or signals such as traffic lights, however the vehicle 
must still obey right-of-way rules and must proceed in the correct order when at a stop point. The 
vehicle must drive safely and defensively, avoiding both static and dynamic obstacles at speeds 
of up to 30 mph and be able to account for and predict the future movement of the other vehicles 
on the road. 

2. Overview 
Team VictorTango has divided the problem posed by the Urban Challenge into three major parts: 
perception, planning, and base vehicle platform. 

2.1 Perception Architecture Overview 
To fulfill the behavioral requirements of the Urban Challenge, Odin must first be able to 
adequately localize its position and perceive the surrounding environment. Since there may be 
sparse waypoints in the RNDF and areas of poor GPS coverage, the surrounding road coverage 
and legal lanes of travel must also be sensed. Finally, Odin must be able to perceive all obstacles 
in its path and appropriately classify obstacles as vehicles.  
 
For each perception requirement, multiple sensors are desirable to achieve the highest levels of 
fidelity and reliability. To allow for maximum flexibility in sensor fusion, the planning software 
does not use any raw 
sensor data; rather it uses a 
set of sensor-independent 
perception messages. The 
perception components 
and the resulting messages 
are shown in Figure 1. The 
Localization component 
determines the vehicle 
position and orientation in 
the world. The Road 
Detection component 
determines a road 
coverage map as well as the
component detects obstacles
is any obstacle that is cap
dynamic obstacle with zero 

 

2.2 Planning Archite
The planning software on O
decisions and lower level
independent rates, allowing
plan an entire route. Splittin
to be tested independently. 
given the short developme
planning process is shown in
 

Figure 1: Perception structure overview
 position of each lane in nearby segments. The Object Classification 
 and classifies them as either static or dynamic. A dynamic obstacle 
able of movement, so a stopped vehicle would be classified as a 
forward velocity. 

cture Overview 
din uses a Hybrid Deliberative-Reactive model dividing upper level 
 reactions into separate components. These components run at 
 the vehicle to react to emergency situations without needing to re-
g the decision making into separate components allows each system 

It also allows for parallel development, which is especially attractive 
nt timeline of the DARPA Urban Challenge. An overview of the 
 Figure 2.  
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The Route Planner component is the coarsest level of planning and is responsible for determining 
which road segments and zones the vehicle should use to travel to all checkpoints. It will update 
the desired route upon request in situations such as blocked segments or traveling behind slow 
traffic. 
 
The Driving Behaviors component is responsible for obeying the rules of the road and guiding 
the vehicle along the planned route. This includes deciding when lane changes are necessary, 

determining the progression order at intersections and 
navigating zones. To maintain these behaviors, situational 
awareness and high-level decision making must be 
achieved. The Driving Behaviors component continuously 
determines a set of goal points and motion guidelines for 
the Motion Planner in the form of a behavior profile. This 
behavior profile takes into account object, road, and route-
network information and works to achieve the optimal 
route provided by the Route Planner. 
 
The lowest level of the planning process is the Motion 
Planning component. Motion Planning receives behavior 
profiles and plans the proper sequence of vehicle 
commands to achieve the desired behavior. The motion 
planner uses the dynamic constraints of the vehicle, all 
perceived road data, and both static and dynamic obstacle 
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igure 2: Planning structure overview
 data to plan a safe trajectory. If a behavior profile cannot 
achieved, it is reported back to the Driving Behaviors component. The output of the Motion 
nner is a sequence of curvatures and speeds that the Vehicle Interface will translate to the 
essary vehicle actuators. The curvature-based output of the Motion Planner allows the 
tware to remain platform independent. Only the Vehicle Interface component changes when 
ving software between vehicle platforms. This has allowed use of the Virginia Tech Grand 
allenge vehicles (Cliff & Rocky) and autonomous Cadillac SRX for testing and development.  

 Base Platform Overview 
m VictorTango’s entry in the Urban 

allenge is a modified 2005 Hybrid Ford 
ape named Odin, shown in Figure 3. This 
e vehicle platform meets the requirement 
a midsize commercial automobile with a 
ven safety record. The use of the hybrid-
ctric Ford Escape provides numerous 
antages in the areas of on-board power 
eration, reliability, safety and 
onomous operation. As required by 
RPA, the drive-by-wire conversion does 
 bypass any of the stock safety systems. 
ce the stock steering, shifting and throttle sy
e, these systems can be controlled elect

F  
igure 3: External view of Odin with sensors labeled.
stems on the Hybrid Escape are already drive-by-
ronically by emulating the command signals, 
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eliminating the complexity and failure potential associated with the addition of external 
actuators. The stock hybrid power system is able to provide sufficient power for sensors and 
computers without the need for a separate generator. 

3. Analysis & Design 
This section presents the justification of the major design choices made in the development of 
Odin. For clarity, the section is organized into three major parts: perception, decision making, 
and base vehicle platform. In each of these sections, the design requirements are reviewed, the 
specific implementation is discussed, and the justification for decisions is provided. 

3.1 System Architecture & Communications 
Previous Grand Challenges could be solved using a purely Reactive software architecture; 
however the complex nature of the Urban Challenge necessitates a hybrid solution. In addition to 
the simpler goal-seeking behavior required in the previous challenges, Urban Challenge vehicles 
must maintain knowledge of intent, precedence, and timing. With many concurrent perception 
and planning tasks of varying complexity, priority, and computation time, parallelism is 
preferred to a single monolithic Sense-Plan-Act structure [Murphy, 2000].  
 
VictorTango’s software structure employs a novel Hybrid Deliberative-Reactive paradigm. 
Odin’s perception, planning, and acting occurs at several levels, in parallel tasks running at 
different refresh rates, acting on the most recent information received from other modules. An 
overview of the hybrid mixture of deliberative planning, reactive navigation, and concurrent 
sensor processing is shown in Figure 4. 
 
The primary design goals for Odin’s communications architecture include support for parallelism 
and the Hybrid Reactive-Deliberative paradigm; portability between different vehicle platforms, 
which is especially important for testing; modularity, which eases the division of work in a large 
team; and automated configuration, which allows software elements to be moved between 
computers without reconfiguration. JAUS (the Joint Architecture for Unmanned Systems) was 
implemented for communications, because it provides support for all of these design goals. Each 
software module is implemented as a JAUS component running on one of the computing nodes. 
All interactions between software modules occur via JAUS messages.  
 
The most useful features of JAUS are the message routing and dynamic configuration 
capabilities, which allow components to be moved from one computing node to another without 
changing settings. In addition to the standard JAUS messages, approximately 60 additional 
experimental messages were implemented for the Urban Challenge to pass data such as Road 
Coverage and Lane Position.  
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Figure 4: System Architecture for Odin. All interaction between software modules takes place via JAUS messages. 
For clarity, the connections from all software elements to the Health Monitor are omitted. 

3.2 Perception 
Perception is defined to include all aspects of the design necessary to sense the environment and 
transform the raw data into information useful to the decision making software.  

3.2.1 Sensor Selection 
Odin’s sensor coverage is dictated by the fields of view and the ranges needed to safely and 
successfully navigate through an urban environment at speeds up to 30 mph. The first coverage 
area considered was the area in front of the vehicle. Obstacles detected in this area pose the 
greatest threat for a collision, so it is important that the vehicle is able to sense these objects early 
enough to react to them. From the Urban Challenge rules, the maximum speed that a vehicle will 
be traveling within the competition course is 30 mph, yielding a maximum differential speed 
between Odin and a dynamic obstacle of 60 mph. Testing has shown that Odin’s steering and 
braking systems require approximately 1.25 seconds to safely initiate and complete an evasive 
maneuver in a worst-case, high-speed head-on collision scenario. From these tests, it has been 
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calculated that the vehicle’s forward-looking sensors must have a range of at least 50 meters to 
appropriately react in this extreme case. 
 
The sensor suite must also have a field of view that will allow Odin to detect dynamic obstacles 
all around the vehicle. This field of view is necessary for the vehicle to appropriately react to 
other vehicles approaching from the side or traveling in adjacent lanes. It is also necessary for 
the vehicle to travel in reverse. Since Odin will move slowly in reverse, and cannot slide 
laterally, the maximum relative velocity between Odin and a vehicle approaching from the side 
or rear will be 30 mph. The range necessary for sensing obstacles to the side and rear of the 
vehicle was thus taken to be half of the forward-looking distance, or 25 meters.  
 
Odin’s sensor systems must also be able to classify the objects it sees. All objects will be 
identified as either static or dynamic obstacles. From the Urban Challenge rules, the only 
dynamic obstacles on the competition course will be vehicles (i.e no pedestrians). Any obstacle 
having a significant velocity and size is, therefore, classified as a vehicle. The sensor system 
must also have a means of identifying stationary vehicles and classifying them as dynamic 
objects with zero velocity. This is particularly important in cases such as vehicles being queued 
at an intersection, or temporarily disabled. 
 
Another requirement of the sensor system is the ability to detect roads, drivable areas, lane 
markings, and stop lines in front of the vehicle. Odin needs to be aware of road coverage and 
lane markings in the lane in which it is traveling as well as adjacent lanes. Since the average 
width of a travel lane is 3.6m, the required sensor field of view must be at least 11m in width (3 
lane widths) in front of Odin. This enables Odin to detect adjacent lanes on either side. 
 
Odin’s sensor suite must also provide an absolute measurement of its position and orientation on 
the Urban Challenge course. Tasks such as stopping at stop lines and parking will require precise 
navigation, which requires precise localization. Odin’s Localization module will combine inputs 
from several sensors to provide the best possible position solution. However, this solution is only 
guaranteed to be as accurate as the most accurate absolute measurement. When geo-referenced 
landmarks are not visible, this absolute measurement can only be provided by a Global 
Positioning System (GPS). Therefore, using as accurate a GPS system as possible will improve 
the overall Localization performance. For this reason, the GPS accuracy requirement has been 
established to be less than 1 meter CEP.  
 
The GPS/INS solution chosen for Odin is a NovAtel Propak LB+ system with Omnistar HP 
differential corrections. The Propak LB+ system uses NovAtel’s SPAN technology to fuse IMU 
and GPS data to provide a smooth 3D position, velocity, and attitude solution. This system will 
provide Odin with a full position solution with an accuracy of 0.1 meters CEP, even in areas with 
poor GPS satellite coverage.  

3.2.2 Sensor Layout 
The sensor coverage for Odin is shown in Figure 5. The largest portion of Odin’s detection 
coverage is provided by a coordinated pair of IBEO Alasca XT Fusion laser rangefinders. This 
system includes two 4-plane rangefinders and a single external control unit (ECU) that covers a 
260 degree field of view, as shown in Figure 5. The system has an advertised range of almost 
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200 meters, although the effective range to reliably identify most objects has been shown in 
testing to be closer to 100 meters. IBEO rangefinders also utilize multi-return technology, 
filtering out the effects of dust or precipitation, which could otherwise return false readings. A 
single IBEO Alasca A0 unit with a range of 80 meters and a field of view of 150 degrees is used 
to detect vehicles behind Odin and navigate in reverse.  
 

 

100m 

Figure 5: Odin’s sensor coverage. The colored areas indicate the maximum range of the sensor or the point at which 
the sensors scanning plane intersects the ground. Odin is facing to the right in this figure. 
 
The ECUs for the XT Fusion and A0 each contain commercially available object classification 
software that is able to group scan points together to form discrete objects with known positions, 
velocities, and sizes. Tests have shown that the software’s segmentation is accurate, especially 
for moving vehicles. The classification software does have difficulty with multiple small objects 
closer than 1 meter apart, which are often grouped together as a single larger object. Also, the 
classifications for stationary objects are often incorrect. These inconsistencies have been 
remedied with a custom developed post-processing filter that acts on object age, velocity, and 
acceleration. 
 
Two Imaging Source color monocular cameras are used to supplement the IBEO classification 
software. In combination, the cameras cover a 90-degree horizontal field of view in front of 
Odin, and they are capable of simultaneously transmitting two raw 1024 by 768 images at a rate 
of 15 frames per second across an IEEE 1394 connection. A number of automatic adjustment 
features such as shutter speed and gain are available, and other features such as exposure time 
are controlled in software to maintain consistent lighting conditions. These cameras are also used 
as the primary means of road detection. In testing, visual information such as color and texture 
has proven to be more effective than laser scanners in detecting roads.  
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It is difficult to detect negative obstacles with monocular vision processing alone. Since the 
IBEO rangefinders are oriented such that they do not intersect the road on flat ground, two SICK 
LMS 291s are mounted on the front corners of the roof rack, angled downward in order to detect 
sharp changes in the otherwise level road. In addition, two side-mounted SICK LMS 291 single 
plane rangefinders are used as simple “bumpers” to cover the side blind spots of the vehicle and 
ensure 360-degree coverage. 

3.2.3 Road Detection 
To successfully complete missions, Odin must be able to identify roads and road boundaries, 
especially in segments where the waypoints are sparse and GPS coverage is poor. Vision 
processing is the primary means of accomplishing this task, since roads have a relatively 
consistent color and texture. Odin is outfitted with two forward-looking monocular cameras, as 
described above, to achieve a 90 degree field of view. Using visual information gathered from 
multiple points in front of the vehicle, a threshold operation is performed to filter out non-road 
particles. The HSL (hue, saturation, and luminance) color space is used for its resistance to 
changes in lighting conditions. At this point the color image is converted to a binary image to 
reduce the amount of processing needed for the remaining steps. 
 
A number of particle analysis operations are executed on the binary image to remove false 
positives and to more clearly define the detected road. These operations remove particles if they 
are outside a certain size range, occur above the horizon, or do not match the overall geometry of 
the road. Finally, any holes inside the remaining particles, such as those caused by lines, road 
markings, or objects on the road, are filled. Once the road has been identified based on its size 
and geometry, a map of the road coverage is created. This road map is averaged over several 
frames to minimize the effects of spurious noise. 
 
A secondary system uses two SICK laser rangefinders to supplement the visual road coverage 
system, scanning the ground for flat drivable areas. Rapid changes in range can be attributed to a 
discontinuity in the road surface, such as road edges, curbs, potholes and obstacles.  
 
The operations performed by the visual road coverage algorithm remove any markings on the 
road. A separate algorithm identifies and outputs the location of the visible lane markings. This 
routine primarily uses intensity to distinguish the bright lane boundaries from the darker 
surrounding areas of the road surface. Edge detection is applied to the results of the intensity 
operation, separating out the lines and edges of the road. Finally, the position of each lane is 
found by fitting the strongest lines on the road to a curve through a Hough transform [Duda, 
1972]. 

3.2.4 Object Classification 
The accurate identification and classification of objects is one of the most fundamental and 
difficult requirements of the Urban Challenge. The vision system and the laser rangefinders each 
have advantages and disadvantages for classification. The IBEO rangefinders can determine the 
location of an object to sub-meter accuracy, but they have poor classification capabilities. 
Vision-based methods can result in accurate classification, but they are computationally 
intensive, and they have a limited horizontal field of view and range. 
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Objects are classified into one of two categories: static objects that will not be in motion, and 
dynamic objects that are in motion or could be in motion. Dynamic objects on the course are 
expected to be either manned or unmanned vehicles. The core of the classification module, 
shown in Figure 6, is the IBEO laser rangefinders. The A0 and XT Fusion rangefinders cover 
almost the entire area around Odin, and objects can be detected using the software available on 
the IBEO ECUs. Since there can be some variation in each return, an initial filter is applied to 
remove objects that appear to jump back and forth or to blink in and out of existence. The 
positions of the remaining objects are checked against the road coverage map of nearby roads; 
anything not on or close to a known road segment is discarded. 

 

 
Figure 6: The flowchart for the Object Classification module, which is responsible for determining the location and 
classification for all perceived objects. 
 
Once these detected objects are sufficiently filtered, their locations and characteristics are passed 
to a classification center for verification. Through testing, the IBEOs have proven to be accurate 
in classifying moving objects, and it is assumed that all large moving objects are vehicles. It is 
also important for the system to detect stationary vehicles in front of Odin for situations such as 
intersection queuing and precedence. Static and dynamic objects in Odin’s path are checked 
using monocular image processing. The real-world locations of these objects obtained from the 
IBEOs are converted to regions of interest in the image through a perspective transformation. 
These regions are examined through vision processing for features common to cars such as tail 
lights and tires. Because the entire image is never examined, the high resolution of the cameras 
does not greatly increase processing time. This image processing technique is also used to 
improve the detection and classification of moving objects. Finally, the SICK rangefinders 
attempt to locate any positive or negative static obstacles in the otherwise smooth road unseen by 
the IBEOs. 
 
To deal with conflicting classifications (i.e., when the vision and rangefinder results disagree) a 
certainty value is determined for each filtered object. The IBEO bases this value on the size, 
shape, and velocity of the object, while the visual classification bases this value on the number of 
features that identify the object as a car. The visual certainty value must be greater than that of 
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the IBEO to override the classification, and the overall value must exceed a threshold to identify 
the object as a vehicle. 
 
Once an object has been classified as a vehicle, it 
is monitored by the Dynamic Obstacle Predictor, 
which predicts likely paths for each vehicle 
based on traffic laws, road data, surrounding 
obstacles, and the object’s motion history. These 
predictions, shown in Figure 7 are used by 
Driving Behaviors to classify situations and 
Motion Planning for obstacle avoidance. 
 

3.2.5 Localization 
The urban environment presents challenges with re
characterized by tall buildings and other structures 
and can reflect GPS signals. In this situation, G
completely unavailable. To maintain an accurate po
be supplemented with inertial, odometric, or other r
 
Odin has been equipped with an integrated GPS/IN
solution, even during GPS outages. However, afte
the position uncertainty of the system will increa
minimize this drift, an Extended Kalman Filter (EK
speed and steering angle measurements with the so
EKF provides an optimal combination of the INS m
 
The system model for Odin is nonlinear; therefore
needed for optimal estimation. The EKF provide
missions where the nominal trajectory of the ve
trajectory error estimates are used to update the refe
 
The EKF also allows measurements to be added t
allows inclusion of measurements taken much les
important reference measurement that is included 
rules require that vehicles be able to detect stop lin
the painted line. These lines can essentially be tre
Therefore, no matter how far the position solutio
vehicle will always be able to accurately localize its
 
Another problem that arises when dealing with
phenomenon known as GPS “pop”. GPS pop occur
an area with poor GPS coverage to an area with ac
through an environment without GPS observatio
measurements to determine its position. These type
function of time and distance traveled. When accur
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Obstacle Predictor for a car detected by Odin. 
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the position solution suddenly jumps from the purely inertial or odometric solution to the true 
position of the vehicle. An example of this phenomenon based on data collected while driving 
through an urban area is shown in 
Figure 8. Position jumps such as 
this are problematic for other 
perception algorithms that rely on 
the localization solution to build 
maps or track obstacles. 
Effectively, this “pop” corrupts all 
of the data stored in the map. 
Filtering the INS solution with 
vehicle odometry measurements 
can reduce the magnitude of the 
position jumps, but it cannot 
eliminate them. Therefore, to 
avoid this problem, Odin’s 
localization software computes a 
de-coupled position solution based 
solely on inertial and odometric measurements. This position solution is referred to as the local 
position of the vehicle. The vehicle uses the local position solution to determine its position 
relative to its environment. The global position solution is still used for RNDF-based navigation 
by higher level decision making components such as the Route Planner and Driving Behaviors 
modules. This de-coupled solution ensures that the position solution being used by perception 
components remains continuous with no inexplicable jumps that will corrupt obstacle or map 
data. 

Figure 8: An example of the phenomenon referred to as GPS “pop”. 

3.3 Planning 
Decision making for Odin is handled by a suite of custom developed software. Each of the major 
components is presented in sequence, from the top down. 
  
3.3.1 Route Planning 
The Route Planner component is the coarsest level of decision planning on Odin. It only 
determines which road segments should be traveled to complete a mission, with decisions such 
as travel velocity, when to change lanes or how to navigate zones being handled by lower level 
components. The Route Planner uses a-priori information such as the road network and speed 
limits specified by the RNDF and MDF respectively as well as information gathered during 
mission runs. The gathered information includes actual distance between waypoints, any 
blockages present in a segment, and the speed of traffic. After processing, the Route Planner 
outputs a series of waypoint exits to travel to each checkpoint in the mission. 
 
By only considering exit waypoints, it is easy to formulate the Route Planner as a graph search 
problem. The Route Planner on Odin uses the A* graph search method [Hart, 1968] using a time 
based heuristic to plan the roads traveled. While the A* search algorithm guarantees an optimal 
solution, it depends on the validity of the data used in the search. The time estimate used during 
the search assumes that the vehicle is able to travel at the specified segment speed limits, and it 
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uses predefined estimates of the time for typical events, such as the time for a left turn to be clear 
or the time to traverse a stop line intersection.  
 
The Route Planner also can respond to dynamic situations such as traffic speed or blockages. 
When blockages are detected and reported to the Route Planner, it marks the blockage in its 
internal representation of the RNDF and it solves for a new route. A blockage is only stored for 
30 minutes to allow for changing course conditions. If a new solution cannot be found when re-
planning, previous blockages are removed in order of age until a solution is found. 
 
When calculating the estimate of travel time, the Route Planner uses current traffic speed rather 
than the speed limit if the traffic speed is available. Accounting for traffic speed allows Odin to 
take alternate routes if the most direct route is occupied by a slow moving vehicle. Traffic speed 
is also stored in short term memory to prevent Odin from immediately returning to the same slow 
road segment. It also prevents Odin from incorrectly penalizing the segment after traffic patterns 
have changed. 

3.3.2 Driving Behaviors 
Driving Behaviors is responsible for obeying the rules of the road, producing three outputs. First, 
Driving Behaviors must produce a behavior profile which takes into account high-level 
information and defines the general motion of the vehicle to Motion Planning in both roads and 
zones. Second, the turn signals and horn must be controlled to appropriately signal the intent of 
the vehicle. Finally, in the event of a road-block, a new set of directions must be requested from 
the Route Planner.  
 
Due to the number of goals and the variety of inputs that Driving Behaviors must take into 
account to determine these outputs, a Behavior-Based Paradigm was implemented for this 
module. The unpredictable nature of an urban environment calls for a robust, vertical 
decomposition of behaviors. Other advantages of using a Behavior-Based Paradigm for this 
application include modularity, the ability to test incrementally, and graceful degradation 
[Murphy, 2000]. 
 
As with any Behavior-Based architecture, implementation details are extremely important and 
can lead to drastically different emergent behaviors. Since no centralized planning modules are 
used and control is shared amongst a variety of perception-action units, or behaviors, 
coordination becomes paramount. In the Urban Challenge environment, the problem of action 
selection in the case of conflicting desires is of particular interest. For example the desire to drive 
in the right lane due to an upcoming right turn must take precedence over the desire to drive in 
the left lane due to a slow moving vehicle. The desire to remain stopped at an intersection 
because of progression order despite a break in traffic is another example. Many comparative 
studies of various Action Selection Mechanisms (ASM’s) such as [Maes, 1991], [Tyrell, 1993], 
[Bryson, 2000], and [Avila-Garcia, 2002] illustrate the respective merits and drawbacks of 
different approaches. The majority of ASM’s can be broken into two main groups, arbitration or 
command fusion, as defined in [Pirjanian, 2000]. Examples of arbitration mechanisms include 
Subsumption Architecture [Brooks, 1986], and Winner-Takes-All strategies such as activation 
networks [Maes, 1989]. Examples of command fusion mechanisms include Potential Field 
Methods [Arkin, 1987], and the Payton-Rosenblatt voting approach [Rosenblatt, 1995]. 
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Because of the inflexible nature of driving in an urban environment, it is clear that an arbitration 
method of action selection is most appropriate for the Driving Behaviors module. In the above 
example of choosing the appropriate lane to drive in, driving with two wheels in each lane is not 
an acceptable solution. Based on the activation energy, only one behavior should be selected and 
one travel lane sent to Motion Planning. Therefore, a modified Winner-Takes-All mechanism 
was chosen. The overall architecture of Driving Behaviors is shown in Figure 9. The selected 
Action Selection Mechanism operates within the Behavior Integrator. This approach is 
considered a modified Winner-Takes-All approach because all behaviors are broken down into 
one of three categories: Target Point Drivers, Speed Drivers, and Lane Drivers. This allows for 
different behaviors, depending on their focus, to all be ‘winners’. The Behavior Integrator is 
therefore responsible for ensuring that there is a ‘winner’ from each category so a full behavior 
profile can be generated at any time. This structure also allows for greater modularity and 
specialization amongst behaviors, which is especially useful in the complexity of the Urban 
Challenge environment. 
 

 
Figure 9: Overall architecture and flow diagram of the Behavior-Based, Winner-Takes-All Driving Behaviors 
implementation. 

 
The first stage of Driving Behaviors, Build Route, takes the set of directions defined by the 
Route Planner and builds a more detailed route to follow. This is composed of the exact series of 
RNDF-defined waypoints that the vehicle would need to follow to reach the required 
checkpoints in the proper order assuming no other vehicles or obstacles were present. The Build 
Route module also infers other information from the RNDF and determines the appropriate start 
point for the mission. For example, the number of forward/oncoming lanes along the route is 
determined along with the exits to watch at any given intersection. The Build Route module is 
separated in Figure 9 by a dashed line to indicate that it does not continually run. It is the most 
time-consuming and processor-expensive part of Driving Behaviors, so it will only run when the 
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Route Planner sends a new set of directions. This will occur at the beginning of each mission, 
and in the case that an impassable roadblock is found. 

 
The modules that run continuously within Driving Behaviors are the behaviors themselves. At 
any given moment, a selection of individual behaviors is chosen to run based on the current 
situation. This situation is a function of both the goals of the vehicle and the current 
environment. Each behavior, running in parallel with other behaviors, represents some higher 
level desire and produces at least one of three standard outputs that compose the behavior profile. 
 
The three standard outputs for any given behavior are Target Points, a Desired Speed, or a 
Desired Lane. As shown in Figure 9, any single behavior, or driver, can output any combination 
of these standard outputs. For example, the Passing Driver is both a Speed Driver and a Lane 
Driver, whereas the Exit Driver is a Speed Driver and a Target Point Driver. The Winner-Takes-
All mechanism implemented in the Behavior Integrator selects the appropriate behavior based on 
an urgency value. For the correct emergent behavior to be produced, it is important to control the 
urgencies set by individual behaviors carefully. Fine tuning of behavioral urgencies is performed 
through extensive testing both in simulation and on the vehicle itself. 
 
Ensuring that the behavior profile is capable of dictating the proper overall behavior of the 
vehicle in every Urban Challenge situation is another important design consideration. Examples 
include dictating a controlled passing maneuver, commanding the proper lane for an exit or 
checkpoint, navigating and parking in a zone, executing U-turns, and following right-of-way 
rules at an intersection without excess delay. The full behavior profile therefore consists of a 
Desired Velocity, a Desired Lane, a Direction Indicator, which dictates forward or reverse travel, 
and three Target Points. Each Target Point consists of an X and Y location within the local 
frame, a set of Behavior Flags, an optional heading, and the Lane ID of that Target Point. The 
Behavior Flags include a Stop Flag, which indicates to Motion Planning that the vehicle must 
come to a complete stop at that Target Point and remain stopped until a new set of Target Points 
are sent with the Stop Flag removed. In the case of a road, the Target Points are used to indicate 
the general direction of travel; it is assumed that lower level control issues such as lane 
maintenance, especially in the case of sparse waypoints, are handled within Motion Planning. 
Furthermore, in zones, Target Points will be used to guide the vehicle into common travel areas 
and to avoid obvious trap situations, but lower-level obstacle avoidance will again be handled 
within Motion Planning. 

3.3.3 Motion Planning 
Motion Planning is the decision making layer between Driving Behaviors and the Vehicle 
Interface that converts target points into a series of vehicle commands. Motion Planning 
generates a navigation strategy to safely achieve these set goal points using the software flow 
diagram shown in Figure 10. The two main subdivisions are lanes and zones. Lane navigation 
requires the vehicle to maintain strict boundaries and conform to the motion other vehicles. If 
static obstacles are present and an achievable trajectory exists, Motion Planning will navigate 
around them. Zones, on the other hand, are much less structured and require a balance of speed 
and steering based obstacle avoidance. 
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Figure 10: Software Flow Diagram of the Motion Planning Component 
 
The core of the Motion Planning process is an achievable trajectory search that simulates future 
motion to determine a safe and fast path through the sensed environment. The search starts with 
the current vehicle state and uses an A* search to evaluate sequences of possible future motion 
commands. The search speed is improved by only using a finite set of possible actions that have 
pre-computed simulation results [Lacaze, 1998]. The search favors motion commands that will 
reach target points in minimum time while avoiding obstacles and keeping lateral accelerations 
within safe limits. By constraining the set of available motions, the same algorithm can be used 
for driving in a lane, navigating through a zone, and positioning a vehicle for parking. 
 
To assist the achievable trajectory search, the speed 
limiter monitors dynamic obstacles and stop line 
positions. Dynamic obstacles are evaluated using a 
robust algorithm called Velocity Obstacles [Firorini, 
2001]. This algorithm reduces the number of searchable 
trajectories by outputting a velocity space that yields 
collision-free motion. Similar to the behaviors of a 
human driver, one of three collision avoidance 
maneuvers can be chosen for each obstacle: moving in 
front, moving behind, or diverging. The chosen 
behavior is dependent on the trajectory of the dynamic 
obstacle. Figure 11 shows the three different maneuvers 
in the example of another car merging into Odin’s lane. 
Velocity Obstacles operates on relative velocities, 
desensitizing it to object range and rate of detection. A 
second speed constraint is used to reduce speed when 

Figure 11: The three avoidance maneuvers 
 considered by Velocity Obstacles 
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approaching a stop line. A desired speed is output based on the distance away from the stop line 
and the current speed of the vehicle. Monitoring these values allows Motion Planning to 
command a smooth, controlled stop. 

3.3.4 Vehicle Interface 
The main role of the Vehicle Interface component is to interpret the generic motion profile 
messages from Motion Planning and output vehicle-specific throttle, brake, steering, and shifting 
signals. This requires closed-loop speed and steering control as well as transmission actuation. 
By accepting generic motion commands, any updates to the vehicle-specific hardware or 
software will be transparent to the higher level decision making components. In addition to 
simply following the motion profile commands, the Vehicle Interface implements simple 
rollover prevention by modifying any potentially unsafe motion profile commands. It is also 
responsible for handling the vehicle mode, actuating the audible and visual indicators, and 
monitoring the vehicle’s CAN bus for the vehicle state information, such as odometry, needed by 
Localization.  
 
To provide a high level of software stability, the Vehicle Interface runs on a National 
Instrument’s Compact RIO controller. The messaging and higher level controls take place on the 
real-time processor of the RIO, while the lower level closed-loop control of speed and curvature 
occur at very high speeds (between 5 and 10 kHz) on the computer’s FPGA (Field 
Programmable Gate Array) modules. The component uses six separate threads to perform all of 
its tasks: JAUS messaging, motion profile handling, vehicle mode handling, speed control, 
steering control, and vehicle data bus reading. This prevents slower processes such as JAUS 
messaging, which only runs each time a message is received, from holding back the more time 
critical processes, such as speed and steering control. Thus, the Vehicle Interface can perform all 
required tasks at separate speeds to actuate each of the systems needed to control the vehicle.  

3.4 Base Platform 
The base platform for Odin is a 2005 Ford Escape Hybrid that has been outfitted with drive-by-
wire controls, power systems, sensor arrays, and computing systems.  

3.4.1 Vehicle Selection & Conversion 
Team VictorTango has selected a 2005 Ford Escape Hybrid as the platform for Odin. The Hybrid 
Escape contains several features advantageous for use as an autonomous vehicle. Throttle and 
shift controls are natively drive-by-wire and the steering system is electrically, rather than 
hydraulically, assisted. These features help simplify the resulting conversion to computer control. 
The vehicle also has a powerful on-board generator and high-voltage battery system. This system 
is capable of providing excess electrical power for computing and sensing systems while being 
charged and managed by the factory control system. The vehicle also provides 0.75 m3 of cargo 
space to mount electronics, as shown in Figure 12. At the same time, the vehicle is small enough 
at 1.8m, wide by 4.4m long to maintain good maneuverability and dynamic performance. Ford 
Motor Company joined team VictorTango and provided two base vehicle platforms, technical 
support and access to proprietary information, including vehicle CAN bus protocols. All of these 
factors made the Hybrid Escape an excellent choice for the base vehicle platform.  
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The throttle, shifting, and steering systems were converted to drive-by-wire by tapping into the 
stock control inputs and simulating the signals to drive the factory systems. No actuators were 
added to the vehicle to control these functions. These systems are fitted with automatic relays 
that will disable the systems for human control or emergency situations. The brake was fitted 
with a pedal-mounted linear actuator. A separate, spring-actuated failsafe emergency brake 
system has also been fitted to Odin.  
 
A closed-loop, feed-forward speed 
control algorithm that directly 
compensates for inclines, maintains 
the desired vehicle velocity over a 
wide range of terrain. The vehicle 
is capable of accelerations of 2.5 
m/s2, decelerations of 7 m/s2, and 
velocity tracking accuracies of 0.1 
m/s. A curvature-based steering 
control algorithm uses a simple 
dynamic bicycle model to account 
for vehicle dynamic effects on 
curvature control. This model 
corrects for the effects of velocity 
and tire slip in order to increase the 
accuracy of curvature following 
over a strictly theoretical model. 

F
s

 
The computing and sensor systems are
high-voltage hybrid power system on 
Lite Uninterruptible Power Supply to
Power for sensors is provided by a se
24V power. The total available capac
40% is currently being used. All of th
rear cargo compartment of Odin. Co
system to the rear.  

3.4.2 Computing Systems 
The two primary objectives in des
complexity while still achieving the b
in a machine cluster. Additionally the
to the demand of the individual softw
running on a single computer offere
performance machine has been effi
control.  
 
Using virtual machines does introdu
architecture. For example, high-speed
speed USB, or video capture dev
igure 12: Odin's electronics rack showing computing and power 
ystems. Note that the vehicle retains full passenger capability. 
 powered by a 2kW 48V DC-DC converter attached to the 
the Escape. Eighty percent of this power is fed to a Tripp-
 provide redundant AC power to the computing systems. 
condary DC-DC converter to provide 400 Watts of clean 
ity of the power system is 2kW, of which approximately 
e major power and computing systems are mounted in the 
oling is provided by ducting the stock air-conditioning 

igning the computer system were to reduce hardware 
enefits of high performance and process isolation inherent 
 ability to easily reallocate computing resources according 
are components was desired. The use of virtual machines 

d an ideal solution. By using virtual machines, one high 
ciently partitioned and has precise hardware allocation 

ce some technical challenges in the computing system 
 devices requiring DMA transfers such as firewire, high-
ices are generally not supported under virtualization. 
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Additionally, the software development system used for machine vision development is only 
compatible with Microsoft’s Windows operating system. To overcome issues of hardware 
compatibility and performance, the team decided to use a hybrid system consisting of a Linux 
para-virtualized machine cluster and a single high performance Windows XP machine. Both 
machines are HP Proliant DL140 rackmount servers with a 2 Ghz quad core CPU and 4GB of 
RAM. They are connected to a gigabit ethernet switch, which serves as the backbone for the 
vehicle communications system. Most of the devices, including the IBEO laser rangefinders, the 
Vehicle Interface, and the SICK LMS, either operate natively over the network or, in the case of 
the SICKs, employ a Serial-to-Ethernet bridge. Inter-process communication is handled over the 
network through the JAUS architecture. The Linux computer also provides network services 
such as DHCP, NIS, and DNS for ease of development and NTP for time synchronization. 
Additionally, the Linux computer serves as a file store for the entire vehicle system.  
 
While the Linux computer serves as the main processing system for network abstracted sensors, 
the Windows XP computer is primarily used to run computer vision algorithms and interface 
with hardware that may not be accessible through the virtual machines. Both computers are 
connected over a KVM switch to a console in the front of the vehicle and every computer, 
including the virtual machines, has a graphical terminal that is accessible over VNC, allowing 
several users to simultaneously develop, monitor, and debug the system. 

4. Results & Performance 
Groups that design and implement a vehicle system are often more focused on how that 
component will work rather than how it might fail. To provide a system of checks and balances, 
team VictorTango has formed an independent test team. The primary responsibility of the test 
team is to develop and conduct tests on the vehicle that are meant to push systems to the limits of 
their performance and expose their weaknesses. By doing so early in development, the reliability 
of the vehicle is improved.  

4.1 General Test Team Methodology 
Two primary methods are used to test 
vehicle components and software. A 
simulator has been developed that allows 
many functions of the software algorithms 
to be quickly tested. Vehicle systems and 
software are also tested on Odin in a 
variety of real driving tests. Both methods 
are used to validate successful operation of 
all vehicle components. 
 
The simulator provides a virtual 
environment for testing software 
algorithms. Rather than running in a real 
environment where untested software could 
pose safety concerns and cause an accident 
that damages the vehicle and sensors, 
testing in the virtual environment is free from most real world consequences. The simulator also 

Figure 13: Screen capture from TORC simulator 
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allows for testing on virtually any course configuration, providing the team with the ability to 
test in a broad range of situations. Figure 13 shows a screen capture from the simulator. 
 
On-road testing has been performed to evaluate sensor performance, software behaviors, and 
navigational accuracy and stability. A wide variety of test scenarios encompassing the behaviors 
anticipated for the Urban Challenge event have been developed and are currently in use. 
 
During testing, data files consisting of vehicle performance parameters, sensor data, and software 
commands are logged. These data sets can be replayed through the simulator to analyze vehicle 
behaviors and performance criteria. Comparison of previous logged tests permits performance 
evaluation for software development.  

4.2 Component Test Results  
Although Odin is still under development at the time of this writing, extensive testing has been 
performed to validate the design decisions and verify system performance. Odin’s full 
capabilities will be displayed at the site visit in June, at the NQE in October, and at the Urban 
Challenge Final Event (UFE) in November, 2007.  

4.2.1 Perception Testing 
The team has demonstrated visual detection of a variety of roads and lane markings, and example 
of which is shown in Figure 14. The road width has been determined to within 1 meter accuracy 
at 15 meters out, and 2 meter accuracy at 35 meters out. 
Although some of the edges are rough and inaccurate, 
this noise is minimized by averaging successive frames of 
the coverage maps and taking into account objects 
obscuring the side of the road. The lane markings are 
currently approximated with straight lines that are 
accurate to within 0.25 meters near the vehicle, and 
within 1 meter at 15 meters out. The lines appear to 
intersect in Figure 14 because their locations have not yet 
been transformed out of the perspective view. A more 
accurate determination of the overall lane width can be 
determined by assuming the width will be constant for a 
single lane, and by fitting curved lines through the Hough 
Transform. 

 

 
SICK laser rangefinders are also used to improve the road c
SICKs cover they are capable of sub-30-cm accuracy. 
horizontal the scans contact flat ground 6 meters ahead o
accurately measure the road width to within 0.1 meters. If 
the range is increased to almost 12 meters. However, the e
between 0.2 and 1 meter depending on the accuracy of the ro
 
The IBEO has proven to be accurate in detecting the pres
meters it can locate moving objects with sub-meter accur
average error of 0.15 miles per hour at 20 miles per ho
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Figure 14: Example road coverage 
overlay. The green area is the road 
detected by the module, and the red lines
define the bounds for the current lane of 
travel.
overage map. For the range that the 
When oriented 19 degrees below 

f the vehicle, allowing the SICK to 
oriented 9 degrees below horizontal 
rror for this orientation increases to 
ad edges.  

ence of dynamic objects. Within 75 
acy and measure velocities with an 
ur. However, as noted earlier, the 



classification of static objects has proven inconsistent. Within 30 meters of Odin the 
classification of a static vehicle is only 25-50% accurate due to the large number of returns 
distorting the profile. This accuracy actually improves to 75-80% between the 30 and 60 meter 
range as fewer scan planes intersect the objects. Basic filtering has improved the short range 
capabilities of the classification module to detect approximately 85% of vehicles within 30 
meters, but this approach does not improve distant classification due to the limited number of 
scan returns. 
 
Visual detection of preceding vehicles has also 
been tested and verified. Using a high 
resolution image, unlit tail lights are detected at 
up to 30 meters, as shown in Figure 15. The 
lights can be detected at a further distance, but 
as a result, there is a larger number of false 
positives even after particle analysis filtering. 
Coupling the system with the IBEO’s detection 
capabilities allows for a more precise 
description of the probable position of vehicle 
tail lights, which in turn will remove these false 
positives. It also allows the system to function 
in a wider variety of lighting conditions. Figure 15: A vehicle detected at a distance of 30 meters. 

4.2.2 Decision Making Testing 
s is the focal problem presented by the DARPA Urban 

s shown in Figure 16, the 4-way intersection scenario is broken down into seven cases based on 

fter performing these tests, action-selection in 4-way and 3-way stops was verified to have a 

Decision making in complex situation
Challenge. To improve robustness and maximize testing efficiency, isolated testing of the 
decision making process is essential. By utilizing the simulator, action selection in such complex 
situations as a 4-way intersection can be thoroughly validated. 
 
A
the relative position of other vehicles in the intersection. The relative position of each vehicle is 
classified as either arriving, stopped, or entering the intersection from the given stop point. From 
these relative positions, an expected result can be determined by following typical rules of the 
road. In Figure 16, the 5th situation is shown, in which upon Odin’s arrival, one vehicle is 
entering the intersection, another is already stopped, and a third is still arriving at the stop point. 
Given this situation, it is expected that Odin will cross the intersection 3rd.  
 
A
100% success rate. An incorrect decision in an urban driving environment can easily present a 
safety threat, possibility for damage, and result in failure of the mission. All decision making 
components will therefore be tested exhaustively in this two-stage manner both isolated (in 
simulation) and integrated with perception (in the real-world). 
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Intersection 
Position 

1 2 3 
Expected Result 

A A A 1st 
A A S 2nd 
A A E 2nd 
A S S 3rd 
A S E 3rd 
S S E 4th 
S S S 4th 

 
Figure 16: Intersection test setup with a matrix of validated situations. 

4.2.3 Base Platform Testing 
To enable safe obstacle avoidance, the dynamic rollover model of Odin was verified by data 
collection during manual operation of the vehicle. A professional stunt driver maneuvered the 
vehicle through a simulated obstacle course. This data, as shown by the red line in Figure 17, 
shows the dynamic limits of the vehicle and ensures that the operating conditions allowed by the 
dynamic model are safe for autonomous operation. The test also verified the performance of the 
steering actuator, as the autonomous system is able to produce steering rates of up to 520 
degrees/s, which easily exceeds the maximum rate of the human driver even in extreme 
situations. 

 
Figure 17: Vehicle dynamic stability results. Red line shows the limit of Odin's dynamic capabilities. The black line 
is the max allowable autonomous performance. 

5. Conclusions 
Team VictorTango has made significant progress since the Urban Challenge project began, and 
is continuing to work on many aspects of the problem. Most importantly, we have invested 
significant effort to organize the system architecture, and to formulate a well-thought-out 
development plan and the software elements needed to be successful in one of the most complex 
and exciting challenges of our generation.  
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As part of this foundation, VictorTango has created an ideal base vehicle platform for 
autonomous urban navigation. Odin is meticulously packaged with ample on-board power 
available directly from the stock hybrid power train, and the drive-by-wire conversion taps into 
the stock control signals for throttle, shift and steering yielding a safe, convenient and reliable 
base platform. The design is revolutionary in the sense that autonomy is being built in, rather 
than added on to, a commercial passenger vehicle.  
 
This same type of solid foundation extends into all the other areas of our Urban Challenge effort, 
for example, in developing tools such as JAUS software toolkit and a custom Urban Challenge 
Software Simulator. The exclusive and extensive use of JAUS provides a level of modularity and 
software portability that would be difficult to achieve without such a messaging architecture. 
This implementation of JAUS is revolutionary in that it extends the standard’s typical 
teleoperation message set to enable the most sophisticated levels of autonomous operation. The 
custom Urban Challenge Software simulator facilitates testing in a variety of software-only and 
hardware-in-the-loop situations; such flexibility in testing streamlines and accelerates our 
development effort greatly. 
 
From the start, perception software has been validated on the real vehicle, decoupled from 
planning software developed in simulation, allowing algorithms to be refined in the most 
efficient manner. Presently, with the individual perception and planning components developed 
and validated independently, testing and refinement of Basic Navigation and Basic Traffic 
behaviors in real-world in-vehicle testing is proceeding rapidly. As a result, VictorTango is well 
positioned for the integration of the Advanced Navigation and Traffic behaviors under 
development now.  
 
Team VictorTango is on schedule in every phase of work to accomplish all of the Basic 
Navigation, Basic Traffic, Advanced Navigation and Advanced Traffic behaviors in the DARPA 
Urban Challenge. Currently, Odin undergoes almost daily testing, with the results demonstrating 
its ability to detect and classify roads and obstacles, make proper driving decisions, and safely 
execute those decisions. In the next few weeks, final physical validation will be complete for all 
16 Basic Navigation and Basic Traffic behaviors required at the Milestone 2 visit in late June.  
 
In conclusion, team VictorTango has developed a solid base platform and produced a suite of 
perception and control software that will be capable of completing the most complex fully-
autonomous ground vehicle challenge in history. Current test results indicate that Odin 
demonstrates the necessary robustness, intelligence, and adaptability to operate in a dynamic, 
unpredictable environment without human intervention. By utilizing a solid base vehicle, 
advanced sensor fusion techniques, and a unique implementation of a Hybrid Deliberative-
Reactive software architecture, team VictorTango is breaking new ground in the field of 
autonomous ground vehicles. 
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